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The free motion of a blunted body of revolution of considerable length through a large-scale cloud of heated gas (a thermal) 
floating in a stratified atmosphere is investigated. An effective numerical method of determining the trajectory of the body is 
proposed, based on the :~imultaneous solution of flow and ballistics problems. The flow problem is solved by a numerical method 
that is very economical in computer time, based on an expansion in a small parameter [1, 2], which is the angle of attack, in 
conjunction with the global-iteration method [2, 3]. The effect of the floating large-scale cloud of heated gas on trajectory, spatial 
orientation and stability of the body is determined. It is shown that under certain flight conditions the presence of a floating 
cloud of reduced density along the path of the body may lead to flipping of the body. 

When the motion of a body in the atmosphere is being investigated it is necessary to determine the 
trajectory, which d,epends on the values of the aerodynamic coefficients, which are found by solving 
the problem of the flow around the body. At the same time, the solution of the problem of the flow 
around the body d~,~pends on the body orientation in space and the parameters of the incident flow, 
determined by the trajectory. To solve this problem approximately one usually solves only the systems 
of equations to determine the motions of the body in space (the ballistics problem), while to determine 
the current values of the aerodynamic coefficients one makes use of either a data bank, which has already 
been calculated, or one carries out calculations using approximate formulae. 

To solve this problem with a high degree of accuracy one has to integrate simultaneously both the 
equations of motion of the body and the equations describing the motion of the gas around the body. 
This approach reqlfires considerable computer resources, since at each time step one has to solve a 
complex system of equations to determine the aerodynamic coefficients. The integration step must then 
be chosen to be fairly small (of the order of the characteristic time in which the angle of attack changes). 
The latter approach can be improved considerably in the case of the supersonic motion of an elongated 
body of revolution. Such free motion is usually accompanied by small angles of attack. 

To solve the equations of the motion of the gas around the body it is suggestetl below that the small- 
parameter method [1, 2] should be used, where the small parameter is the angle of attack. Then, for 
fixed conditions of the incident flow, a single-parameter family of solutions is obtained corresponding 
to different angles of attack. In other words, the dependence on the angle of attack using this approach 
is found analytically. In view of the fact that the characteristic time during which the angle of attack 
changes is usually considerably less than the characteristic time in which the parameters of the incident 
flow change, this approach enables the flow problem to be solved much more rarely. The method 
proposed enables one to determine the aerodynamic coefficients, the trajectory of motion and the body 
orientation with a high degree of accuracy, and also with the minimum computer costs for such an 
accuracy. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

We will assume that, at the initial instant of time in the stratified atmosphere of the Earth, a cloud 
of heated gas is formed having the following parameters 

T(z ,  r) = T a (z) + (T,,ax - T,, (z)) exp{-(RTJ/) 2 } (1.1) 

where Rt = 4 km, 7"max = 104 K, Ta(z) is the temperature of the unperturbed atmosphere at an altitude 
z, and l is the distance fxom the centre of the spherical volume. The position of the temperature maximum 
corresponds to an ~dtitude of H = 20 km. 
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Due to the action of Archimedes forces the cloud floats up, forming a vortex ring. This is accompanied 
by intense turbulent mixing of the cold and hot layers of air. Fifteen seconds after the cloud begins to 
float up at an altitude of about 22 km the body enters it with a velocity of 2000 m/s. The body has the 
form of a cone with a blunt spherical head of radius R0 = 0.1 m, a semi-aperture angle of 15", a length 
of 2 m and a mass of 1 t, the centre of mass of the solid being situated a distance L from the vertex. 
The instant at which the solid is 8300 m from the axis of symmetry of the thermal is taken as the time 
origin. The body moves in a plane passing through the axis of symmetry of the thermal and the point 
at which the body is situated at the initial instant. 

At the instant the body enters, the gas is twisted into a toroidal vortex ring, which floats up into the 
atmosphere. In view of this the flow around the body has a varying space--time structure. We will assume 
that the body has no effect on the gas motion in the thermal. 

2. A N U M E R I C A L  M E T H O D  OF SOLVING THE P R O B L E M  

A numerical method of calculating the convective-diffusion of air in the region of a thermal is described 
in [4], where the motion of a blunt body along a specified rectilinear trajectory was also investigated. 

The motion of the gas around the body was described by the system of complete equations of a viscous 
shock layer. It was assumed that the gas flow in the shock layer between the surfaces of the solid and 
the shock wave was quasi-steady at each point of the trajectory, since the characteristic time of motion 
of a fluid particle in a shock layer is much less than the characteristic time of variation of the parameters 
of the problem. 

The small-parameter method was used to solve the system of equations of motion [1, 2]. The method 
consists of expanding the required spatial solution in an asymptotic series in the angle of attack. The 
expansion coefficients of powers of ct (where ¢x is the angle of attack) are then decomposed into a formal 
Fourier series in the meridional angle. Only the fast term of the expansion in tx is retained. The required 
solutions are then represented in the form • = O0 + tXOlcoS ¥, where ¥ is the meridional angle. 

By using the small-parameter method one obtains the values of the aerodynamic coefficients in the 
following form: the drag coefficient Cx = C~  the buoyancy coefficient Cy = txCy 1 and the pitching moment 
Mz = CtMz,. Here Cx,, Cy 1, Mzl are independent of ct. 

The coefficients of the Fourier expansion ~0 and ~1 were determined by the global-iteration method 
[2, 3]. 

The trajectory of motion of the body and its orientation in space is defined by the following system 
of equations [5] 

d~= F(~,Q,A) (2.1) 
dt 

where 
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Here r and tp are the polar coordinates of the centre of mass of the body, the pole of the system of 
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coordinates coincides with the centre of the Earth, the polar axis is the Y-axis of a Cartesian system of 
coordinates, the X, Y plane of which coincides with the plane of motion of the centre of mass of the 
body, where the Y-axis passes through the centre of the Earth and the position of the centre of mass 
of the body at the initial instant of time, the angle 9 is measured in a clockwise direction, ~ is the modulus 
of the velocity veetc,r v of . . . . . . .  the centre of mass of the body, 0 is the angle between the vectors v and r~, 
measured from the latter m an antlelockwlse direction, r is the radms-vector of the centre of mass of 
the body, r = I r I, the subscript z denotes that the corresponding quantity is calculated with respect to 
the axis passing through the centre of mass of the body, perpendicular to the plane of the trajectory of 
motion, m, S, I and J~ are the mass, the maximum cross-section area, the length and moment of inertia 
of the body, V is the modulus of the velocity of the incident flow with respect to the body, p is the air 
density in the incident flow, C~, Cy, M~ are the aerodynamic coefficients, where Cy = txCy e Mz = ttMz~; 
M~z is the aero-dynamie damping moment and 13 is the angle, measured in an anticlockwlse direction, 
between the axis of symmetry of the body and the direction of the X-axis. 

The vector ~ completely describes the body motion in space, and the vector Q has its own components 
required to calculate; the parameters of the thermal (W~ and Wy are the components of the flow velocity 
in the thermal along the X and Y coordinate axes, respectively, p is the density and T is the air 
temperature at the point of space and the instant of time-considered). Here A = A(~, Q), Q = Q(~, t); 
the vector Q is time-dependent due to the motion of the thermal. 

The angle of attack is calculated from the formula 

ct = ~ + arcsinlVyV -I } 

where Vy is the projection of the velocity vector V of the incident flow onto the Y-axis. 
For simplicity, the; values of the quantities tp, 0, [I, [1" are taken to be zero at the instant t = 0. 
In this formulation of the problem, the quantity Mz ~ can be neglected in view of its smallness. 
The whole system of governing equations can be solved as follows. 
At the initial instant, the system of equations of a viscous shock layer is solved for the specified 

parameters of the incident flow. Then, during a time Atg, the system of ballistics equations is integrated 
from the definition of the position of the centre of mass and the body orientation in space with fixed 
values of C , Cy I and Mzl, which depend only on the parameters of the incident flow, but with variable 
values of the angle o,f attack tx. The step Atg is determined by the charactenstle time of variation of the 
parameters of the incident flow. Here the system of ballistics equations is integrated with step At b ,~ 
At This is due to the fact that the characteristic time of variation of the angle of attack is much less 
than the charactenstlc time of variation of the parameters of the incident flow (the body oscillates about 
the position corresponding to zero angle of attack). After a time At s the sequence of the solution of 
the whole system is lrepeated with, possibly, other values of Att, and At r 

The system of equations (2.1) is integrated as follows. 
+1 +1 n Consider system (2.1) in the time interval [f ,  t n ], where t n = t n + (AL). We will assume that at 

. . . .  . & 

the instant t n, we know the values of all the quantities m (3.2) and the derwatives with respect to time 
of the vectors ~ and Q. 

We replace system (2.1) in the interval [t n, t n+l] by the system 

- • £ • =  F(~G"(t), U"(t)) 

A "+l - A" (2.2) 
Un(t) = A'~ + ( t - t " ) ,  A ''+n = A ( ~  +t, ,~0n:~:"+l , t"+n)) 

( Atg )" 

where Gn(t) is the local spline, which approximates the function Q(t) in the interval If,  tn+l], constructed 
+1 n + l  from the values of the function G(t) and its derivatives at the points t n and t n , and ~ is found from 

the solution of the C, auehy problem 

d 
~- tg0=F(~,Qg(t ) ,A") ,  ~o(t")=l~(t '~) 

2 
d , - I  .n . . . .  n .  d , , -~n- I . .n  Qg(t) = Q" + ~ - G  . ( t ) ' ~ t - t  )~t2 ~ (t )-(t--tn) 2 

at the point t n+l. 
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The solution of system (2.2) with accuracy O(At~g) gives the solution of the initial system (2.1). System 
(2.2) is solved by the method of successive approximations and a solution is obtained with an error of 
less than 1% after 2--4 iterations. At each iteration of the method of successive approximations, the 
system of equations (2.2) was integrated by the Runge-Kutta method of the third order accuracy in 
At b. The characteristic ratio Att,/Atg here was 10-210 -3. The time step Atg took values of 0.2-1 s. 

The characteristic time taken to calculate the interval of physical time Atg amounted to several dozen 
minutes on an IBM 386/387 computer. 

3. RESULTS 

The gas in the region of the thermal, due to the action of Archimedes forces, is converted into a 
vortex ring. Here the thermal, as a whole, floats up, and the velocity field in it resembles a toms. 

In the unperturbed atmosphere the centre of pressure turns out to be behind the centre of mass, 
and the body motion is stable. When the body moves towards the centre of the thermal the density of 
the incident flow falls rapidly, while the temperature increases, which leads to a reduction in the Mach 
number M.  and the Reynolds number Re..  Below we give data on the gas temperature T**, the gas 
flow velocity in the thermal W and the angle a3 of inclination of the vector W to the axis of symmetry 
of the thermal at several points of the trajectory (the angle is measured from the axis of the axis of 
symmetry of the thermal, pointing upwards, in an anticlockwise direction); from the parameters of the 
incident flow the values of M.  and Re .  are determined, which are also given in Table 1. 

A reduction in the number M .  and Re.  should cause the centre of pressure to shift towards the vertex 
of the cone. At the same time, a reduction in Re** for fixed M_** shifts the centre of pressure in the opposite 
direction, as can be seen from Fig. 1. Nevertheless, the overall effect of a change in M** and Re** along 
the trajectory is to displace the centre of pressure towards the vertex of the cone, which reduces its 
stability. 

In Fig. 1 we show a graph of the position of the centre of pressure L D, measured from the vertex of 
the cone, as a function of the flight time. Here and henceforth the continuous curve corresponds to 
transit through an unperturbed atmosphere, while the dashed curve corresponds to transit through a 
thermal. The increase in Lp after leaving the thermal with respect to the unperturbed case can be 
explained by the relative increase in the velocity of the body, since the body is passing through a less 
dense medium. 

During motion the body executes oscillations about the position corresponding to zero angle of attack. 
On passing through an unperturbed atmosphere the amplitude of the oscillations of the angle of attack 
is small (Fig. 2). We considered two cases of the position of the centre of mass: L = 50 c m  (Fig. 2) and 
L = 140 cm (Fig. 3). When L = 50 cm the body has a considerable reserve of stability, and the oscillations 
of the angle of attack occur with relatively small amplitude. When L = 140 cm the angle of attack varies 
with a period and amplitude which is several times greater than for L = 50 cm. In the neighbourhood 
of the centre of the thermal, where the velocity of the gas motion is a maximum, the angle of attack is 
a maximum. In this region, as can be seen from Fig. 1, the centre of pressure turns out to be ahead of 
the centre of mass and the body position becomes unstable. This may cause the body to flip over. 

In Figs 4 and 5 we also show graphs of the angle of inclination x of the body axis to the horizontal 
(the pitching angle) for L = 50 cm and L = 140 cm, respectively. The maximum of x in Fig. 4 is due 
to the fact that the body in this case, being extremely stable, turns around rapidly in the incident flow, 
which in the neighbourhood of the centre of the thermal has the maximum angle of inclination to the 
horizontal. 

In Fig. 6 we show graphs of the trajectory of the solid for L = 140 cm. When L = 50 cm the presence 
of a thermal along the path of the body has practically no effect on the trajectory, and no change can 
be seen on the graph; in the second case, when L = 140 cm, the change in the trajectory is much more 
significant. 

Table 1 

t, s 2,0 3.2 3,8 4,2 4,7 5,3 6,6 
T, K 220,2 420,5 623,8 663,0 614,4 440,2 219.0 
w, m/s 15,4 60, I 184, I 235,6 199,1 79,2 17.6 
a~, m_/s 108.1 ° 26,7 ° 4.4 ° 0,0 ° -3,2 ° -15.3 ° -145. 60 
M .  6,44 4,53 3,81 3.74 3.88 4,6t 6.18 
Re .  x 105 8.33 2.41 1.41 1.34 1,56 2,82 8.50 
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